Electrical Engineering Dept.
Electronics and Communications Section

Electronics Circuits (1)
Sheet No. 2

1- For the circuit shown in fig. 1\&2
a) Determine the critical frequencies associated with the low-frequency response of the amplifier.
b) Determine the critical frequencies associated with the high-frequency response of the amplifier
c) Which is the dominant critical frequency and Sketch the Bode plot.
d) Determine the voltage gain of the amplifier at one-tenth of the dominant critical frequency, at the dominant critical frequency, and at ten times the dominant critical frequency for the low-frequency response.
e) Determine the phase shift at each of the frequencies used in d.
f) What is the bandwidth of the amplifier.

2- For the circuit shown in fig. 3
a) Determine the lower critical frequencies. Assume that the load is another identical amplifier with the same R_{in}. The datasheet shows $\mathrm{I}_{\mathrm{Gss}} 100 \mathrm{nA}$ at $\mathrm{V}_{G S}=-12 \mathrm{~V}$.
b) Find the upper critical frequency for the FET amplifier where $\mathrm{C}_{\mathrm{iss}}=8 \mathrm{pF}, \mathrm{C}_{\text {rss }}=3 \mathrm{pF}$, and $\mathrm{g}_{\mathrm{m}}=6500 \mathrm{mS}$

3- In a certain two-stage amplifier, the lower critical frequencies are $f_{c(1)]}=125 \mathrm{~Hz}$ and $f_{c(12)}=125 \mathrm{~Hz}$, and the upper critical frequencies are $f_{c u(1)}=3 \mathrm{MHz}$ and $f_{c u(2)}=2.5 \mathrm{MHz}$ Determine the bandwidth.

4- What is the dominant lower critical frequency of a three-stage amplifier in which $\mathrm{f}_{\mathrm{c}}=50 \mathrm{~Hz}$ for each stage.
5- $f_{T}=200 \mathrm{MHz}$ is taken from the datasheet of a transistor used in a certain amplifier. If the midrange gain is determined to be 38 and if $f_{c l}$ is low enough to be neglected compared to f_{cu}, what bandwidth would you expect? What value of $f_{c u}$ would you expect?

Assignment Design CE amplifier has a voltage gain of 100 and bandwidth of 1 MHz , maximum power consumption accepted is 50 mW from 12 V DC supply.

Figure 1

Figure 2

Figure 3

