1- For the circuit shown in fig.1&2

- a) Determine the critical frequencies associated with the low-frequency response of the amplifier.
- b) Determine the critical frequencies associated with the high-frequency response of the amplifier
- c) Which is the dominant critical frequency and Sketch the Bode plot.
- d) Determine the voltage gain of the amplifier at one-tenth of the dominant critical frequency, at the dominant critical frequency, and at ten times the dominant critical frequency for the low-frequency response.
- e) Determine the phase shift at each of the frequencies used in d.
- f) What is the bandwidth of the amplifier.
- 2- For the circuit shown in fig.3
 - <u>a)</u> Determine the lower critical frequencies. Assume that the load is another identical amplifier with the same R_{in} . The datasheet shows I_{GSS} 100 nA at V_{GS} =-12 V.
 - <u>b</u>) Find the upper critical frequency for the FET amplifier where C_{iss} =8 pF, C_{rss} =3 pF, and g_m =6500mS
- **3-** <u>In a certain two-stage amplifier</u>, the lower critical frequencies are $f_{cl(1)}=125$ Hz and $f_{cl(2)}=125$ Hz, and the upper critical frequencies are $f_{cu(1)}=3$ MHz and $f_{cu(2)}=2.5$ MHz Determine the bandwidth.
- **4-** What is the dominant lower critical frequency of a three-stage amplifier in which f _{cl}=50 Hz for each stage.
- **5-** f_T =200 MHz is taken from the datasheet of a transistor used in a certain amplifier. If the midrange gain is determined to be 38 and if f_{cl} is low enough to be neglected compared to f_{cu} , what bandwidth would you expect? What value of f_{cu} would you expect?

Assignment Design CE amplifier has a voltage gain of 100 and bandwidth of 1 MHz, maximum power consumption accepted is 50 mW from 12 V DC supply.

